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Numerous laboratory and field experiments on nonlinear surface wave trains prop-
agating in deep water (Lake & Yuen 1978; Ramamonjiarisoa & Mollo-Christensen
1979; Mollo-Christensen & Ramamonjiarisoa 1982; Melville 1983) have showed a
specific wave modulation that so far has not been explained by nonlinear theories.
Typical effects were the so-called wave phase reversals, negative frequencies, and crest
pairing, experimentally observed in some portions of the modulated wave train. In
the present paper, in order to explain these modulation manifestations, the equations
for wavenumber, frequency, and velocity potential amplitude are derived consistently
in the third-order approximation related to the wave steepness. The resulting model
generalizes, for instance, the well-known nonlinear Schrödinger equation theory, to
which it transforms at certain values of the governing parameters.

The stationary solutions to the derived set of equations are found in quadrature
and then analysed. Within well-defined ranges of the model parameters, these solu-
tions explicitly manifest the above-mentioned wave modulation effects. In particular,
they show the wave phase kinks to arise on areas of relatively small free-surface
displacement in complete accordance with the experiments.

The model with deeply modulated wavenumber and frequency permits one also to
analyse the appropriately short surface wavepackets and modulation periods. In this
case, a variety of new interesting wave solutions arises revealing complicated alteration
of smooth and rough portions of the free surface. Of special importance are solitary
waves, naturally generalizing envelope solitons of the nonlinear Schrödinger equation,
but having a varying frequency (as a principle of the proposed theory) and a non-zero
wave ‘pedestal’ at infinity. These new types of modulated surface waves should be
also observable in laboratory tanks and under field conditions, because the relevant
free parameters of theory are not extreme.

1. Introduction
For the past two decades experiments on the nonlinear wave propagation on

water surfaces have revealed a number of modulation effects that have not been
explained by theorists. Lake & Yuen (1978) were the first who observed the wave
crests ‘lost’ at a quasi-zero amplitude (node) of deeply modulated surface wave trains.
Then a similar effect was found by Ramamonjiarisoa & Mollo-Christensen (1979)
and Mollo-Christensen & Ramamonjiarisoa (1982) in wind sea waves and under
laboratory conditions: a nonlinear surface wave merged with the foregoing one and
then disappeared. As a result of such a ‘crest pairing’, the wave period is doubled
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instantaneously. These local effects in the wave field are sometimes assumed to be
responsible for a long-fetch downshift (Huang, Long & Shen 1996) of the average
wave frequency.

Melville (1983) investigated thoroughly the evolution of an initially uniform train
of Stokes surface waves in a long laboratory tank. At the wave fetch beginning,
he observed the development of the well-known Benjamin–Feir (1967) sideband
instability resulting in weak amplitude–frequency modulation of the wave train.
As nonlinear effects accumulated along the tank, an asymmetry arose in the wave
envelope related to its maximum. The relative phase between modulations of wave
amplitude and frequency also changed: the initial phase lag of 1

2
π tended to π and,

in the developed nonlinear mode, the amplitude was modulated with phase opposite
to that of frequency modulation. At a longer distance, Melville observed the most
prominent features of that mode, the so-called phase ‘reversals’ accompanied by very
large variations in the wavenumber, frequency, and phase velocity. In particular, the
frequency turned out even to be negative near those local phase kinks.

Observing the drastic modulational development of nonlinear wave groups, Chere-
skin & Mollo-Christensen (1985) after an elaborate numerical study stated it to
be impossible to describe these effects with the use of the nonlinear Schrödinger
equation (NSE) derived by Zakharov (1968) as well as of any weakly nonlinear
(third-order) theory. According to the NSE theory, an initially uniform wave train
propagates periodically transforming into a coupled group of envelope solitons and
vice versa (Zakharov & Shabat 1972). The NSE model has often been improved to
describe more adequately various regimes of finite-amplitude surface wave propaga-
tion. The most popular in this field was the study of the wave self-interaction on
the basis of more accurate modulational equations including the fourth-order terms
in wave steepness (Roskes 1977; Dysthe 1979; Tomita 1986; Lo & Mei 1985, 1987;
Akylas 1989, 1991). These works explained the so-called group splitting observed in
deep-water experiments by Feir (1967) and Su (1982), when an initially symmetrical
(NSE-type) surface wave group became an ordered sequence of packets after long-
fetch propagation due to the average frequency downshift in leading packets. The
proper downshift indicates that the theory may be enhanced by weakening restrictions
imposed onto the wavepacket spectrum variation. In fact, the numerically integrated
fourth-order NSE model applied to a bimodal wave spectrum yields quantitative
agreement with experiments (Lo & Mei 1985; Stansberg 1995). Furthermore, that
model with dissipation is in qualitative agreement with the experimentally observed
frequency downshift (Hara & Mei 1991, 1994; Kato & Oikawa 1995; Uchiyama
& Kawahara 1994). Unfortunately, numerical analyses of this kind do not explain
the listed peculiarities of deeply modulated surface waves (phase kinks, negative
frequencies, crest pairing).

The NSE deduced in the third-order approximation in wave steepness is always
based on the principle of a spectrally narrow modulation. However, we believe that
the general potency of the uniformly valid expansion in this approximation is not
exhausted by known solutions found for the wave envelope within the NSE theory.

The main goal of the present paper is to derive and study a general set of the third-
order equations for slowly modulated wave trains propagating on the surface of deep
water. As distinct from other works, the proposed model should allow for a variety
of uniformly valid solutions with the wavenumber and frequency having relative
variations of the order of unity over the ‘slow’ coordinate and time. This deep wave
modulation observed in the above-mentioned experiments is not described by the
classical NSE theory. In this work an asymptotic two-scale expansion will be applied
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directly to the velocity potential and free-surface displacement of irrotational water
motion. The subsequent stationary solution to the modulational equations derived for
three functions characterizing the motion (the potential amplitude, wavenumber, and
frequency) should give a uniformly valid asymptotics for weakly nonlinear surface
waves to describe the wave phase reversals and other deep modulation effects. It is
noteworthy that the equations to be solved are similar in essence to those written by
Chu & Mei (1970, 1971) and are analysed here to take substantially deep modulation
into account.

The theory presented should reduce to the NSE model at certain values of the
controlling parameters. However, we hope to discover in this way other special modes
of wavepacket propagation, having the same origin as the above local phase kinks.
For instance, it would also be interesting to find a generalization to the NSE envelope
solitons in the form of solitary wavepackets with somewhat different properties.

The proposed account for deep modulation can extend the applicability range for
modulational equations, for example, to model sufficiently short wavepackets. Usually
these wave groups with no distinct envelope are described by combined equations with
higher-order dispersion terms additional to the NSE-type ones involving nonlinear
group velocity, wave aberration, etc. (see, for instance Gromov & Talanov 1996). We
hope to show the NSE solitons to be merely a specific class of solitary solutions
that can have a non-zero wave amplitude at infinity. In turn, these solitary waves
exemplify more general modulated wave trains, to which the definition of a slowly
varying envelope is hardly applicable.

The paper is organized in the following manner. Section 2 contains the prob-
lem’s initial statement including its scaling and assumptions necessary to derive the
governing modulational equations in partial derivatives for the first-order potential
amplitude, wavenumber, and frequency. Restricted travelling surface wave solutions
are found and qualitatively analysed in § 3 with the use of the phase plane of potential
and velocity amplitudes, depending on the fluxes of wave energy and action, as well as
on the frequency detuning from group resonance. Various wave modulation regimes
are exhibited and discussed in § 4 by the examples of two lowest harmonics of the
free-surface displacement, as well as by the wave frequency and phase. In § 5 we
present concluding remarks.

2. Main equations
The set of equations for potential motion of an ideal incompressible infinite-depth

fluid with the free surface is given by:
the Laplace equation

φxx + φzz = 0, −∞ < z < η(x, t), (2.1)

the boundary conditions at the free surface

φt + gη + 1
2

(φ2
x + φ2

z) = 0, z = η(x, t), (2.2)

ηt + φxηx = φz, z = η(x, t), (2.3)

and at the bottom

φ = 0, z = −∞. (2.4)

Here φ(x, z, t) and η(x, t) are the velocity potential and the free-surface displacement,
g is the gravity acceleration, and t is the time. Horizontal and vertical (in the upward
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direction) axes of an orthogonal Cartesian coordinate frame are denoted as x and z,
respectively.

Let us normalize the variables as follows:

φ = a0

(
g

k0

)1/2

φ′ = ε

(
g

k3
0

)1/2

φ′, η = a0η
′ =

ε

k0

η′,

t =
1

(gk0)1/2
t′, z =

z′

k0

, x =
x′

k0

, (2.5)

where a0 is a characteristic free-surface displacement, 2π/k0 is a typical surface
wavelength, ε= a0k0 is the conventional average wave steepness parameter, and the
dimensionless quantities are primed. It is noteworthy that normalization (2.5) explicitly
specifies the principal scales of sought functions φ = O(ε) and η = O(ε). Then, the
set (2.1)−(2.4) is reduced to the form

φxx + φzz = 0, −∞ < z < εη(x, t), (2.6)

−η = φt + 1
2
ε(φ2

x + φ2
z), z = εη(x, t), (2.7)

ηt + εφxηx = φz, z = εη(x, t), (2.8)

φ = 0, z = −∞, (2.9)

where the primes are omitted. Further analysis is based on the assumption of small
parameter ε � 1; therefore the weakly nonlinear surface wave train is described by
a solution to equations (2.6)–(2.9), expanded into a Stokes series in terms of ε.

Assuming also the wave motion phase θ = θ(x, t), we define the wavenumber and
frequency in the usual way as

k = θx, ω = −θt. (2.10)

These main wave parameters together with the first-order velocity potential ampli-
tude φ0 will be considered further as slowly varying with the characteristic scale
O(ε−1) longer than the primary wavelength and period (Chu & Mei 1970):

φ0 = φ0(εx, εt), k = k(εx, εt), ω = ω(εx, εt). (2.11)

On this basis we attempt to recover the effects of nonlinear wave dispersion additional
(having the same order) to Stokes’ (1849) term with the wave steepness squared.

The solution to the problem, uniformly valid to O(ε3), is found by a two-scale
expansion with the differentiation

∂

∂t
= −ω ∂

∂θ
+ ε

∂

∂T
,

∂

∂x
= k

∂

∂θ
+ ε

∂

∂X
, T = εt, X = εx. (2.12)

We search for the velocity potential φ=φ(x, z, t) satisfying the Laplace equation (2.6)
up to O(ε2),

φ = φ0e
kz sin θ + ε(γz + δz2) ekz cos θ + . . . , (2.13)

where φ0, γ, and δ are the functions of O(ε) to be determined in ‘slow’ variables X
and T , while k=O(1).

The second (absolute)-order term appears in (2.13) as an unusual parabolic-profile
jet γz+δz2 oscillating with the fundamental wave phase θ. (The second-harmonic
potential is omitted since it gives rise only to O(ε4) corrections to satisfy the boundary
conditions.) However, Yuen & Lake (1975) had employed a profile of the oscillatory
subsurface current linear in z. This jet is caused by the modulated wavenumber
distorting the conventional exponential decay of surface waves with depth. Obviously
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expansion (2.13) is not unique, but all possible expansions of the fluid velocity potential
(and the free-surface displacement) should be equivalent within the accepted accuracy
for the modulated wavenumber and frequency.

One sees also that an induced zero-harmonic potential φ̄ of O(ε2) (see Dysthe 1979;
Lo & Mei 1985) is not included in (2.13), because the pair of functions φ̄, η̄ (where
the latter is the relevant induced displacement) arise in the modulational equations
only in terms of O(ε4). Analogously, we take no account of the potential O(ε3) terms
since these are balanced in the linear parts of boundary conditions (2.7) and (2.8) and
do not change the third-order modulation equations.

Substituting potential (2.13) into the Laplace equation (2.6) and equating the
coefficients at the same orders in ε, we find directly the modulational corrections to
the vertical velocity profile

γ = −φ0X, δ = − 1
2
kXφ0. (2.14)

The free-surface displacement η= η(x, t) is also sought as an asymptotic series,

η = η0 + εη1 + ε2η2 + . . . , (2.15)

where η0, η1, and η2 are O(ε) functions of X and T . Using expressions (2.13)–(2.15)
subject to the dynamic boundary condition (2.7), we find the components of the
free-surface displacement

η0 = ωφ0 cos θ, (2.16)

η1 = −φ0T sin θ + 1
2
ω2kφ2

0 cos 2θ − 1
2
k(k − ω2)φ2

0, (2.17)

η2 = − 3
8
ωk3φ3

0 cos θ + . . . . (2.18)

The first term in (2.17) has the fundamental frequency shifted in phase from (2.16) due
to the time-dependent potential (cf. Yuen & Lake 1975), while the third one is of O(ε4)
as induced by nonlinear deflection k−ω2 from the dispersion relation for infinitesimal
waves and should be neglected. Only the self-action term with fundamental wave
phase θ is included in the third-order displacement (2.18).

Substitution of velocity potential (2.13)–(2.14) and surface displacement (2.16)–
(2.18) into the kinematic boundary condition (2.8) gives the following relationships
between the wave modulation characteristics:

ω2 = k + ω2k3φ2
0 + φ0TT/φ0, (2.19)

(ωφ0)T + ωφ0T + φ0X = 0. (2.20)

The first of these formulas, representing the dispersion relation with the total second-
order amplitude–phase dispersion included, simplifies to

ω2 = k + k4φ2
0 + φ0TT/φ0. (2.21)

Equation (2.20) yields the known wave action conservation law

(ωφ2
0)T + 1

2
(φ2

0)X = 0. (2.22)

Modulational equations (2.21) and (2.22) are closed by the equation of wave phase
conservation that follows from (2.10) as a compatibility condition

kT + ωX = 0. (2.23)

Closed set (2.21)–(2.23) defines all three unknown modulation functions: the first-
order potential amplitude φ0, wavenumber k, and frequency ω. These equations are
mathematically (to an accepted order) equivalent to equations (7.1) derived by Chu
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& Mei (1970) but compared to the latter the wave dispersion law (2.21) is not
linearized by rooting. By derivation, the total frequency ω contributes in the wave
action law (2.22), while only the frequency linear part ω0 was taken into account in
Chu & Mei’s equation (7.1). The resulting difference of O(ε4) is obviously beyond our
consideration. In fact, the effects of nonlinear group velocity are introduced by an
O(ε2) correction to the first term of (2.22), keeping the wave action to be invariant
within the second order (Whitham 1974). The meaning of the term with twice
differentiation in (2.21) was explained by Chu & Mei (1971) as the second-order effect
of the modulation rate. However the most important point is that Chu & Mei (1970)
in their equations for permanent waves assumed additionally cg = c+O(ε), where cg is
the wave group velocity and c is the observer’s velocity. In the present work we do not
use such an assumption, setting cg = c+ O(1). The corresponding relative variations
in the wavenumber and frequency have also an order of unity. Even though the
wave train remains narrowbanded around these instantaneous wave characteristics
at all times and locations, the effective (for instance, experimentally measured) wave
spectrum has a width determined just by these variations. Such a train will be hereafter
referred to as deeply modulated.

3. Travelling wave solutions
Let us find travelling wave solutions to the problem (2.21)–(2.23), supposing all

the unknown functions to depend on the single coordinate ξ=X−cT , where c is the
velocity of a reference frame where the waves are stationary. It is noteworthy that
the velocity c need be not high, c=O(1), in order to keep the accepted scaling. Then,
after integrating (2.23) and (2.24), the problem has the form

ω2 = k + k4φ2
0 + c2 φ0ξξ/φ0, (3.1)(

−cω + 1
2

)
φ2

0 = A, (3.2)

−ck + ω = Ω, (3.3)

where A and Ω are the integration free constants with obvious physical meaning of the
wave action flux and frequency, respectively, measured in the laboratory coordinate
frame.

After eliminating the wavenumber k and frequency ω the set (3.1)–(3.3) transforms
into a single equation for the first-order potential amplitude φ0. We renormalize the
controlling constant A, unknown variable φ0(ξ), and accompanying coordinate ξ,
then introduce a laboratory frequency detuning ∆ from the group resonance by

A = c6Ã, φ0 = c3φ̃0, ξ = c2ξ̃, ∆ = 1
2
− cΩ. (3.4)

Now, omitting tildes (or, equivalently, setting the observer’s velocity to unity, c= 1),
we write down the main equation to be analysed:

φ0ξξ = φ0

(
1

2
− A

φ2
0

)2

− φ0

(
∆− A

φ2
0

)
− φ3

0

(
∆− A

φ2
0

)4

. (3.5)

We note at once that equation (3.5) has the exact first integral

1

2
(φ0ξ)

2 =−1

4
∆4φ4

0 +
1

4

A4

φ4
0

+
1

2

(
1

4
−∆+ 4∆3A

)
φ2

0−
1

2

A2 + 4∆A3

φ2
0

− 6∆2A2 lnφ0 +E,

(3.6)

where we assign the meaning of preserved wave energy flux, for instance, emitted by a
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IV NSE

0

φ0n
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Figure 1. Typical phase trajectories of equation (3.5): periodic solution (I), when the right-hand
side of (3.5) has two real roots; singular solution (II) not satisfying the model assumptions (relevant
real roots are absent); intermediate solution (III) consisting of the integral curves of types I and
II for the pair of coinciding roots; and classical NSE envelope soliton (IV) at zero fluxes of wave
action, A = 0, and energy, E = 0.

source at ξ=−∞, to the integration constant E. As a solution to the travelling wave
problem, the first-order potential amplitude φ0 is determined via (3.6) in quadrature.

The structure of this solution to equation (3.5) allows us to consider the phase
plane (figure 1) in coordinates of horizontal velocity φ0ξ and potential amplitude φ0.
There, the sought solutions form a three-parameter (A,E, ∆) family with two main
types of trajectories:

(i) closed type I curves (only the upper part of the curve is shown in figure 1,
while the lower half is symmetrical with respect to the axis φ0) that describe periodic
functions φ0(ξ), as well as k(ξ) and ω(ξ), for travelling surface waves with the extreme
amplitudes corresponding to the edge points φ0min and φ0max of the plotted cycle; the
proper potential φ(ξ, z) and surface elevation η(ξ) are quasi-periodic along the cycle;

(ii) type II curves (also symmetrical with respect to the abscissa) which are singular
at the point φ0 = 0 with infinite horizontal velocities φ0ξ→∞. In the vicinity of the
phase-plane centre the solution to (3.6) satisfies an asymptotic equation 1

2
φ2

0ξ ≈
1
4
A2/φ4

0. Hence the free-surface potential remains restricted there, φ0(ξ)∝A2/3ξ1/3,

while the wave frequency is singular, ω(ξ)∝ ξ−2/3, together with the free-surface
displacement, η0(ξ) =ωφ0 ∝ ξ−1/3. Therefore, the main assumptions of restricted and
slowly varying modulational functions are not met by the type II characteristics and
these are beyond our consideration.

The integral cycles I of figure 1 are defined by two real roots of the equation

φ0ξξ = 0, (3.7)

pointing to the existence of two extrema for the right-hand side of (3.6), which
mean periodic modulation of the fluid velocity amplitude φ0ξ and thus the potential
amplitude φ0. Only the type II singular trajectories exist formally at the absence of
those extrema.

After excluding the trivial root φ0 = 0, equation (3.7) takes the form of the quartic
equation in the squared variable φ2

0 with two parameters ∆ and A,

1

4
− ∆+

A2

φ4
0

− φ2
0

(
∆− A

φ2
0

)4

= 0. (3.8)
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Figure 2. Region of existence (between the curves) of periodically and quasi-periodically modulated
travelling waves in the coordinates of normalized wave action flux A and group detuning ∆. The
ray directed from the point ∆= 1/4 to the left along the abscissa axis displays the relevant region
for the NSE solutions.

The real roots of equation (3.8), when

φ2
0 =

A

1/2− cω > 0, (3.9)

correspond to the opposite directions (signs) of wave action flux A, related to the
sign of detuning between the laboratory system velocity c and the wave group
velocity (2ω)−1, which follows from definition (3.2) Then solving equation (3.8), we
find that (3.7) has positive roots φ2

0 (3.9), and thus equation (3.5) has periodic solutions
in the region of parameters A and ∆ between the two curves plotted in figure 2.

The case of coalescing roots for (3.7), shown by two-branched trajectory III in
figure 1 is intermediate between the wave motions of types I and II. The type III
trajectories touch (cross) the φ0-axis at the point separating the type I modulational
cycles and the type II singular solutions. This phase point corresponds to infinite
physical coordinates ξ → ±∞, thus forbidding transitions between these solution
branches. Obviously, the cyclic branch corresponds to a ‘bright’ solitary wavepacket
riding on the permanent wave background specified by the above separating point.
Meantime the singular branch of curve III, infinitely growing near the phase-plane
origin, might conceivably point to an existence of ‘black’ solitary (anti)packets sup-
pressing totally the permanent wave train down to φ0 = 0. (Similar to the type II
curves, this branch does not satisfy the initial assumptions.)

The bright solitary waves manifest conventional NSE dynamics at zero action flux
A= 0 (group resonance) and zero energy flux E= 0. In this case, the NSE envelope
soliton arises as shown in figure 1 by the integral cycle IV. (Half of it is plotted in
the fourth diagram quadrant.) Here the right-hand side of equation (3.5) is a cubic
polynomial with the zero root φ0 = 0 and the roots φ0 =±∆−2(1/4 − ∆)1/2 for group
detuning ∆6 1/4. Other travelling (cnoidal) NSE wave envelopes are controlled by
the relationship between ∆ and E. The region of existence for the NSE wave solutions
is marked in figure 2 by a ray directed from the point ∆= 1/4 to the left along the
abscissa.

Noteworthy is the specific behaviour of modulated waves in the vicinity of a
critical amplitude φ0c = (2A)1/2 not shown in figure 1 because all curves are plotted
there for different A. If the modulation cycles cross this vertical line, then, by virtue
of (3.2), some wave train portions are quasi-periodically suppressed at the free surface,
because the frequency ω together with the (principal part of) elevation η ∝ ωφ0 tend
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simultaneously to zero. The trajectories φ0ξ = φ0ξ(φ0) have no peculiarities at this
critical point.

4. Analysis of solutions and discussion
All properties of the restricted travelling wave solutions are analysed by integrat-

ing equation (3.6) in quadrature for various combinations of the three controlling
parameters ∆, A, and E. The most interesting stationary solutions are illustrated by
the plots of modulation parameters: the reduced wave frequency

cω(ξ) =
1

2
− A

φ2
0(ξ)

(4.1)

and phase

cθ(ξ) =

∫ ξ

0

[
1

2
− A

φ2
0(ξ
′)

]
dξ′, (4.2)

as well as by the profiles of two lowest harmonics of the free-surface displacement
(see (2.16)–(2.18))

η(1)(ξ) = ωφ0 cos θ − cφ0ξ sin θ − 3
8
k2ω3φ3

0 cos θ, (4.3)

η(2)(ξ) = 1
2
kω2φ2

0 cos 2θ. (4.4)

In all calculations the maximum or the minimum potential amplitudes at the points
where the modulation cycle crosses the abscissa (see figure 1) are taken as ‘starting’
φ0 values.

4.1. Positive wave action flux

Let us first consider using concrete examples the main properties of permanent-form
periodic solutions for the positive wave action flux A> 0, when the wave group
velocity exceeds the velocity of an observer, cg = (2ω)−1 >c. In this case, it follows
from (4.1) that the instantaneous frequency is higher for larger wave amplitudes and
differs from the maximum value ωmax = (2c)−1 by a quantity proportional to the
action flux and inversely proportional to the amplitude squared. Thus as nonlinear
effects grow quite slowly (quasi-stationarily) at a constant and positive wave action
flux, one should observe a specific average frequency upshift in travelling surface
waves.

At sufficiently large wave amplitudes, when φ0 > (2A)1/2, the wave frequency
increases as the amplitude grows and vice versa; therefore these functions can be
modulated rather smoothly and almost in phase along the coordinate ξ. We will start
our consideration from such a case resembling qualitatively the wave self-modulated
solutions to the classical NSE equation. Figure 3 shows two lowest harmonics of the
surface profile η(ξ) together with the reduced frequency cω(ξ) and phase cθ(ξ) for
the following wave parameters: action flux A= 0.30, group detuning ∆= 0.22, energy
flux E= 0, and average steepness ε= 0.25. For better comparison, we reproduce the
second-harmonic displacement η(2)(ξ) on the same scale as the first harmonic η(1)(ξ).
In this case of group resonance corresponding to a type I modulation loop in figure 1,
the zero energy flux implies that there are no wave sources at infinity.

One sees from figure 3 that the wave system as a whole is modulated smoothly in a
regular manner close to the NSE-type ‘cnoidal’ envelope because the first harmonic η(1)

noticeably exceeds the critical quantity ω(2A)1/2 ≈ 0.775ω everywhere on the ξ-axis.
In contrast to the fundamental harmonic, the second-harmonic elevation η(2) has no
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Figure 3. Normalized first (a) and second (b) harmonics of surface profile η(ξ), wave fre-
quency cω(ξ) (c), and phase cθ(ξ) (d) for wave action flux A = 0.30, group detuning ∆ = 0.22,
energy flux E = 0, and steepness ε = 0.25; c is the laboratory frame velocity.
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Figure 4. As figure 3 but with A = 0.92, ∆ = 0.22, E = 0.135 and ε = 0.235.

permanent component and is deeply modulated like a sequence of pulses. The wave
frequency cω follows the wavepacket ‘envelope’ and the phase cθ is almost linear in
the coordinate ξ.

Retaining the same group detuning ∆= 0.22 as in figure 3 and the wave steepness
ε= 0.235 close to the previous value, we choose the flux values A= 0.92 and E= 0.135,
so that the relevant type III trajectory would touch (cross) the abscissa as in figure 1
and the trajectory’s cyclic branch would correspond to the solutions with an infinite
period and a permanent wave motion at infinity. The relevant solitary wave group
is shown in figure 4 as a perturbation of the permanent wave train. One sees here
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Figure 5. As figure 3 but with A = 0.35, ∆ = −0.50, E = 0.20 and ε = 0.15.
Plots (e) reproduce experimental data by Melville (1983).

increases in the first-harmonic displacement η(1) and a concomitant general growth
in the frequency cω (up to the maximum of about 1/2), while the second-harmonic
displacement η(2) has the form of a solitary wave with no ‘pedestal’. Although
figure 4(a) does not show clearly a non-zero fundamental harmonic outside the
solitary packet due to the numerical procedure, an asymptotically constant wave
frequency cω≈ 0.37 can be seen in figure 4(c). The principal distinction of this
wavepacket from the well-known NSE envelope soliton is just the non-zero wave
train at infinity and the varying (elevated for A> 0) ‘carrier’ frequency within the
perturbed region. (Recall that the wave frequency is fundamentally constant within
the NSE soliton.)

According to the previous analysis, we expect a deep wave modulation to ‘smooth’
quasi-periodically the water free surface if the integral cycle approaches the critical
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Figure 6. As figure 3 but with A = 0.10, ∆ = −0.50, E = 0 and ε = 0.12. Graph (e) shows a
fragment of experimental data by Chereskin & Mollo-Christensen (1985).

line φ0c = (2A)1/2 on the phase plane. Such a wave mode is shown in figure 5 for
parameters A= 0.35, ∆=−0.50, E= 0.20, and ε= 0.15. The above smoothing is distinct
in the surface profile (figure 5a, b), it is especially clear for the second harmonic. A
solution of this type has all the main indications of phase reversals observed in the
experiments by Melville (1983) and Chereskin & Mollo-Christensen (1985): the wave
frequency (figure 5c) locally drops from the almost maximum cω≈ 0.48 to zero (more
correctly, to cω≈−0.015), while the phase cθ(ξ) (figure 5d) has sharp kinks localized
exactly at the minimum surface elevations. The phase delays of order π/2 take
approximately one wave period, during which the wave crests are merging together.

For comparison, some fragments of experimental data by Melville (1983) are re-
produced in figure 5(e). One sees there a deep modulation regime (at a maximum
tank fetch) with the experimental profiles of the two lowest surface harmonics qual-
itatively similar to those we displayed for the above-specified model parameters. It
is also of principal interest that, as the wave displacement is rather small as is the



Third-order peculiarities of modulated surface waves 333

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

g(1)
2 4 6 8 10 12 n

(a) (b)

2 4 6 8 10 12 n

0.1

0

–0.1

g(2)

(d )

2 4 6 8 10 12 n

3

2

1

0

–1

–2

–3

ch
cx

(c)

2 4 6 8 10 12 n

0.5

0

–0.5

–1.0

–1.5

–2.0
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frequency (for instance, at t≈ 3 s in figure 5e), the experimental phase kinks in deeply
modulated waves are also qualitatively well described by the proposed theory (cf. plot
d of figure 5).

These wave phase reversals become more intense if the potential amplitude φ0

within a considerable fraction of the modulation period is sufficiently small compared
to the critical value (2A)1/2. This case is exemplified by curves in figure 6 plotted
for the wave action flux A= 0.10, group detuning ∆=−0.50, energy flux E= 0 (no
wave sources), and a steepness of ε= 0.12 (almost the same as in figure 5). Figure 6
shows a more effective surface smoothing (curve a) and sharper phase kinks (curve d).
The wave frequency (figure 6c) synchronously with the surface smoothing takes large
negative values (cω≈−0.54) close in modulus to the maximum positive frequency
(cω≈ 0.49), and the phase (figure 6d) runs in the opposite direction, that is, the
phase kinks are π and greater. It is noteworthy that such frequency drops and phase
kinks were observed by Melville (1983) (see, for example, the relevant plots at t≈ 5 s
and 8 s in figure 5e). The solution in figure 6 also gives evidence for the effects of
wave crest loss (pairing) and period doubling observed in experiments by Lake &
Yuen (1978), Ramamonjiarisoa & Mollo-Christensen (1979), Mollo-Christensen &
Ramamonjiarisoa (1982), and Chereskin & Mollo-Christensen (1985) (cf. figures 6a
and 6e).

Our theory predicts also, in principle, the existence of solutions where the wave
frequency takes even larger negative values. For example, such frequency behaviour
is seen in figure 7(c) for A= 0.07, ∆= 0.50, E= 0.075, and ε= 0.15, plotted together
with two surface harmonics and phase (figure 7a, b and d). Large negative frequency
spikes cause irregular phase cθ(ξ) reversals in the narrow ξ intervals where, in-
stead of smoothing, a surface roughness arises in the lowest wave harmonics (see
figure 7a and b).

In the model, competition between the opposite effects of wave smoothing and
roughening can give rise to rather sophisticated motion. Figure 8, where A= 0.10,
∆= 0.75, and E= 0.05, shows quite a regular asymmetrical N-wave for the first-
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Figure 8. As figure 3 but with A = 0.10, ∆ = 0.75, E = 0.05 and ε = 0.15.

harmonic surface displacement η(1)(ξ) with an average steepness of ε= 0.15. The sec-
ond harmonic η(2)(ξ) reveals only weak periodic splashes, while the wave frequency
(figure 8c) is now smoothly and deeply modulated in the cω intervals from approxi-
mately 0.12 to a relatively large negative value of about −0.8. There the phase cθ(ξ)
undergoes quasi-periodic beats with a reverse in half of the wave modulation period.

4.2. Negative wave action flux

The main properties of travelling wave solutions are noticeably different for a negative
wave action flux A in the laboratory reference frame, when the wave group velocity is
lower than the reference one. Seemingly this case corresponds to moderate-modulated
surface waves with initial steepness ε= 0.23 observed by Melville (1983): in the
experiment the action flux altered its main direction from negative to positive only at
the maximum tank length. This is seen just from the change in polarity of frequency
deflections and phase variations measured by Melville. Taking these deflections into
account and considering formula (4.1) for A 6 0, the instantaneous positive shift from
the minimum wave frequency ωmin = (2c)−1 proves to be inversely proportional to the
potential amplitude squared. Thus, as the nonlinear effects grow quasi-stationarily
at a negative action flux, some average frequency downshift should be observed in
moderate-modulated travelling surface waves.

At noticeable wave potential amplitudes, φ0� (2A)1/2, the frequency falls, as the
amplitude grows: these parameters are modulated in antiphase in contrast to the
previous cases with A> 0. The free-surface profiles of the first η(1)(ξ) and the second
η(2)(ξ) wave harmonics are shown in figure 9 for the negative wave action flux
A=−0.10 at ∆=−0.50, E= 0 (no radiating sources), and ε= 0.15. One sees this
type of solution to correspond well to the nonlinear wavepacket propagation with
antiphase modulation of the packet amplitude and frequency, observed on relatively
short wave fetches by Melville (1983) and Chereskin & Mollo-Christensen (1985). The
wavepacket frequency cω(ξ) and phase cθ(ξ) are quite regularly but deeply modulated
in this example.
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Figure 10. As figure 3 but with A = −0.30, ∆ = 0.30, E = 0.375 and ε = 0.15.

For negative action flux A< 0, the solitary wavepackets can also ride on a per-
manent asymptotically uniform train travelling from infinity, that corresponds to a
cyclic part of the type III trajectory in figure 1. This mode is illustrated by graphs in
figure 10 plotted for A=−0.30, ∆= 0.30, E= 0.375, and ε= 0.15. The solitary surface
wave is observed as in the first harmonic η(1), as in the second one η(2), the former
riding on a permanent train of constant amplitude. In figure 10, the frequency sharply
drops from a large value cω≈ 4.7 to the minimum cω≈ 0.5, being virtually unchanged
inside the solitary packet, and then restores fast to an asymptotic level. The wave
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plot (c) represents the wave phase cθ(ξ).

phase cθ(ξ) is modulated in the same manner, being retarded and virtually uniform
within the packet.

Again with negative group detuning, A< 0, and a stationary source of the wave en-
ergy flux E > 0 at ξ=−∞, a pure frequency-modulated surface wave can be observed
in the nonlinear system. For example, such a wave is shown in figure 11 for A=−0.09,
∆= 0.50, E= 0.12, and ε= 0.25. In this case, a deeply modulated frequency cω(ξ) acts
upon both the wave phase cθ(ξ) and the fundamental-harmonic elevation η(1)(ξ), the
latter having merely negligible amplitude modulation. However, the second-harmonic
displacement η(2)(ξ) presents a periodic sequence of comparatively intense short pulses.

5. Concluding remarks
We have analysed various types of permanent envelopes travelling on the surface

of deep water, which can be treated as solutions to the equations of the third-order
approximation in wave steepness, assuming the wavenumber and frequency variations
are not small. The wave motion examples and analysis have demonstrated the main
features of these new solutions, including their difference from and reduction to
the relevant NSE solutions. Some important nonlinear modulation effects, such as
negative frequencies, phase kinks, crest pairing, etc., often observed experimentally
at long-fetch propagation of finite-amplitude surface wave trains, are reproduced
by the proposed theory. This gives the possibility to design experiments to verify
other predictions of the model, especially those concerning the existence of solitary
wavepackets with changed frequency, riding on a permanent wave background and
containing not many (e.g. five, as in figure 10a) oscillations. The observation of
various deeply modulated wave motions predicted in this paper is of general interest.
The simply scaled model free parameters can facilitate the choice of dynamic and
kinematic wave characteristics appropriate for a relevant laboratory experiment as
well as the search for optimum conditions for the field wave measurements.

It is noteworthy that the theory presented, though qualitatively describing the spe-
cific modulation of travelling surface waves, can be improved by non-stationary solu-
tions to interpret correctly the average frequency downshift in moderate-modulated
waves and by the introduction of (even small) viscosity for a better comparison
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with available experimental data. Another important problem is to investigate the
stability of stationary wave solutions found in the paper. The effect of higher-order
approximations on these solutions should be also evaluated. Besides, the impact of
wave sources can be an object of special study since these change substantially the
wave motion modelled. Due to the short-scale roughness arising in certain ranges of
wave parameters, it would be also useful to take capillary effects into account.

The work was supported by the Russian Foundation for Basic Research under
Project Code 96-02-16682a.
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